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Introduction to nonIntroduction to non--parametric methodsparametric methods

Growth is predicted as a weighted average of 
the values of neighbouring observations. 

Selection can be based on the differences 
between tree and stand level characteristics of 
the target tree and the neighbours. 

In the estimation of chosen character  for a 
given tree the differences across all reference 
trees are calculated and the estimate is 
formed using the chosen nearest neighbours. 

Neighbours are chosen from a database of 
previously measured tree and stand level 
observations. 

Subsumes many methods and variations on 
methods. 
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IntroductionIntroduction

Nearest neighbour methods (NN, k-NN)
1. The commonly used Euclidean or squared Euclidean distance

2. Weighted Euclidean or squared weighted Euclidean distance

3. Manhattan or weighted Manhattan distance

4. Mahalanobis distance
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IntroductionIntroduction

Most Similar Neighbour method (MSN or k-MSN)

Consept based on canonical correlation analysis between 
independent and dependent variables.

Canonical correlation formulation gives the possibility to use only 
the first significant canonical variates – with regression formulation 
the full-rank coefficient matrix must be used.
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IntroductionIntroduction

Generalized additive models (GAM)

Extensions of generalized linear models.

Generalized additive models are a method of fitting a smoothsmooth
relationship between two or more variables through a scatterplot of 
data points. 

Parametrized just like GLMs, but some predictors can be modelled
non-parametrically; the linear function of the predictor values may 
be replaced by non-parametric function obtained by applying a 
scatterplot smoother to the scatterplot of partial residuals. 

Generalized additive models (GAM) have the form:
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IntroductionIntroduction

Only underlying assumption is that the functions are additive and 
that the components are smooth.

Probability distribution of the response variable must still be
specified and in this sense, GAMs are more aptly named semi-
parametric models. 

Estimation procedure for a GAM requires iterative approximation in 
order to find the optimal estimates

Estimation is based on combination of a local scoring algorithm and 
backfitting algorithm. 
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WhatWhat hashas beenbeen examinedexamined??

• Local non-parametric growth estimates for Kuusamo in Finnish
Lapland

• Localization of growth estimates using non-parametric imputation
methods

• Comparison of different non-parametric growth imputation
methods in the presence of correlative observations

• Estimating individual tree diameter and height increment
simultaneously using non-parametric imputation
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LocalizationLocalization of of growthgrowth estimatesestimates usingusing nonnon--
parametricparametric imputationimputation methodsmethods

Why?

The typical models used in forest management planning situations
are national models, which give accurate results in larger areas, but 
for a given area or a stand the models may give large overestimates 
or underestimates

Examination of different non-parametric imputation methods to 
reduce regional biases in growth estimates

Comparison of localized estimates to estimates obtained with non-
spatial imputation and also with estimates from a parametric 
growth model
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LocalizationLocalization of of growthgrowth estimatesestimates ……
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LocalizationLocalization of of growthgrowth estimatesestimates……..
Localization was obtained through a variety of methods:
• Using spatial coordinates as independent variables
• Restricting the selection of neighbours to a circular area around the target tree
• Restricting the selection of neighbours to a local database
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Accuracy of the 5-year tree-level growth estimates obtained by 
different methods, by vegetation zones:

Scots pine 
Bias%
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Scots pine 
Rmse%
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Accuracy of the 5-year tree-level growth estimates obtained by 
different methods, by vegetation zones:

Norway spruce 
Bias%
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Norway spruce 
RMSE%
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Accuracy of the 5-year stand-level growth estimates obtained by 
different methods, by vegetation zones:

Stand-level growth 
Rmse%
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LocalizationLocalization of of growthgrowth estimatesestimates ……..
The localization did not reduce the regional biases compared to the       
basic non-spatial imputation 

The basic k-nn imputation
• can find the nearest neighbours close enough
• had the temperature sum as independent variable, which can be 

seen as a way of localizing and might diminish the difference 
• uses the whole data and usually better matches could be found 

with increasing sample size 

It might be too hard to find the neighbours, at least for the 
exceptional observations, if the amount of possible neighbours is 
reduced

The biases for the exceptional observations were larger for the 
localized models

The most promising alternative to localize was the use of moving 
geographical areas.
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LocalizationLocalization of of growthgrowth estimatesestimates ……

Compared to parametric model:
• In general, the non-parametric models performed well at thin and 

dense stands, while the parametric model produced very large 
variation of residuals in dense stands in many regions. 

• The mean biases in all of the regions were close to each other, while 
the differences in mean bias of growth estimates with parametric
model were over 25 % between the regions. 
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ComparisonComparison of of differentdifferent nonnon--parametricparametric growthgrowth imputationimputation
methodsmethods in the in the presencepresence of of correlativecorrelative observationsobservations

Why?
Observations from the same stand as the target tree are usually
excluded from the pool of possible nearest neighbours. 

However, the nearest neighbours may still all be selected from one
particular stand, if the stand-level variables contain much weight in the 
distance function. 

Earlier studies indicated that some methods are better at tree level and 
some methods at stand level. 

Stand-level or regioanal results may be affected, if the estimates are
formed with too many neighbours from the same correlative
observations. 

The errors of all individual trees may be parallel, if all neighbours are
selected from a stand in dry site, while the target tree is growing in 
fresh site, for example. 
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ComparisonComparison of of differentdifferent nonnon--parametricparametric growthgrowth imputationimputation ……

Methods
• The k-Most Similar Neighbour imputation

• Basic k-nearest neighbour imputation with similarity of the 
trees measured by using squared euclidean distance

• Generalized additive models

• Examination was carried out by using different kind of 
restrictions to the pool of possible nearest neighbours
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The usual situation: neighbours from the same stand as the 
target tree are excluded from the pool of possible nearest
neighbours . Otherwise all the neighbours can be selected
from a one particular plot or stand.
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One per plot restriction: neighbours from the same stand
as the target tree are excluded and only one neighbour per 
each INKA plot can be selected.
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One per stand restriction: neighbours from the same stand
as the target tree are excluded and only one neighbour per 
each INKA stand can be selected.
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Plot restriction: neighbours from the same plot as the target
tree are excluded. Otherwise all the neighbours can be
selected from a one plot or stand.
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No restrictions: neighbours can be from the same stand
and all of the neighbours can be from one plot or stand.
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Accuracy of the tree-level results
Scots pine
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Accuracy of the tree-level results
Scots pine
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Accuracy of the stand-level results
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ComparisonComparison of of differentdifferent nonnon--parametricparametric growthgrowth imputationimputation……

Correlative observations did not have any significant effect on the 
selection of the best possible neighbourhood size in any method. 

Seemed to have similar effects in this and the earlier studies. 

Results indicated some effects of the correlative observations:

• The correlative observations may cause that the tree-level errors are parallel
and thus diminish the accuracy at the stand level

• Stand-level and regional results were not improved by including many
neighbours from one stand, if it was not the target tree stand

• Restricting the amount of mutually correlated neighbours would be 
appropriate when considering the accuracy of stand-level or regional growth 
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EstimatingEstimating individualindividual treetree diameterdiameter and and heightheight incrementincrement
simultaneouslysimultaneously usingusing nonnon--parametricparametric imputationimputation

Why?

• Non-parametric methods offer a possibility to easily predict 
diameter growth and height growth simultaneously

• To compare k-MSN imputation with parametric models also in an 
independent test data

• To examine forecasting of growth for a long period with k-MSN 
imputation and compare the results with parametric models

• To test how large the reference data should be to get accurate 
growth predictions locally
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EstimatingEstimating individualindividual treetree diameterdiameter and and heightheight incrementincrement……

Modelling data was INKA 
• 476 stands
• 12 438 Scots pines
• 3 692 Norway spruces

Kuusamo-data was used as a independent test data
• 71 stands
• 941 Scots pines
• 367 Norway spruces
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Accuracy of the methods in the modelling data

RMSE%
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Performance of the different methods within stands
Stand dominated by Scots pine 
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Accuracy of the methods in the Kuusamo data

RMSE%
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Effect of the size of local reference data on the 
accuracy of stand-level results

RMSE%
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Effect of the size of local reference data on the 
accuracy of stand-level results

Bias%
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Forecasting growth with k-MSN and parametric models

k-MSN imputation
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Forecasting growth with k-MSN and parametric models

k-MSN imputation
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