Production of forest biomass maps using NFI field data and remote sensing

Sakari Tuominen¹ Aleksi Lehtonen¹ Kalle Eerikäinen¹ Anett Schibalski² ¹Finnish Forest Research Institute ²University of Potsdam

Information of forest biomass resources - bioenergy

- Source of bioenergy
 - planning of the structure of energy economy
 - estimation of bioenergy resources in the form of thematic maps
 - availability bioenergy resources in an area or for a project
- Renewable energy sources 25 % of energy consumption in Finland (2004)
- Wood and wood-based fuels play an important role in the decentralised energy system in Finland

Carbon balance of forests

- Forest biomass is an important factor in modelling of carbon balance
- Thematic biomass maps:
 - Can be used in the GHG inventory when estimating carbon losses & gains of land-use change
 - Methodology could be applied in tropics with REDD (Reducing Emissions from Deforestation and Degradation)
 - Could be used as a starting point for a processbased model to predict carbon balance under climate change

Multi-source national forest inventory (MS-NFI)

- From the NFI8 multi-source forest inventory technique has been applied for producing data of forest resources in the form of thematic maps and forest statistics for areas of various size
- The method utilizes field sample plots, satellite imagery and digital maps
- MS-NFI produces estimates at
 - municipality
 - forest estate
 - forest stand
 - sub-stand levels (down to pixel size of 25 x 25 m).

MS-NFI – technique

Field measurements

Satellite images

Digital map-data

Processing of data

Forest statistics

Thematic maps

Objective

 Testing multi-source national forest inventory technique in producing map-form biomass estimates (biomass maps)

Study material

- 2199 NFI10 sample plots from Central Finland (Keski-Suomi) measured between 2004—2006
- Only forestry land plots included
- Biomass components (foliage, branches, stem, aboveground and belowground biomass) modelled on the basis of tree-level NFI data (Repola et al. 2007)
- For biomass estimation the tree species were assigned to the following groups:
 - Pine group (*Pinus sp. & Larix sp.*) 46 %
 - Spruce group (*Picea sp., Abies sp. & Juniperus communis*) 31
 %
 - Birch group (Betula sp., Populus sp., Alnus sp., Salix sp., Sorbus aucuparia & other broadleaved sp.) 23 %
- Biomass models for pine, spruce and birch applied respectively for the species groups

Study area and NFI plots

 NFI10 sample plots measured in Central Finland 2004-2006

Satellite imagery

- The Central Finland study area was covered by 5 Landsat 5 TM image scenes :
 - path 190, row 16-18, date 17.07.2006
 - path 191, row 15-16, date 05.07.2005
 - path 190, row 14-16, date 31.08.2005
 - path 188, row 15-17, date 02.09.2005
 - path 190, row 14-15, date 17.07.2006
- Digital map data was used for excluding other land use classes than forest

Modelling biomass variables from NFI data 1

- On NFI plots, diameter at breast height is obtained for every relascope-sampled tree
- Sample tree characteristics (such as total height and ratio between height and height to the living crown) generalized over the tally trees with nonlinear mixed models
- Estimates of foliage and branch biomass were modelled on the basis of diameter, height and living crown length
- For stem biomass stem wood density models by Repola et al. (2007) containing diameter, tree age and temperature sums and volume functions by Laasasenaho were combined

Modelling biomass variables from NFI data 2

- The total aboveground biomass was the sum of foliage, branch and stem biomass.
- Belowground biomass was computed using the summed up estimations of stump biomass and biomass of roots
- Estimations per tree converted to values per ha

Variables estimated

- Aboveground biomass*
- Belowground biomass*
- Biomass of branches*
- Biomass of foliage/needles*
- Stand volume (traditional MSNFI variable estimated as a thematic map) as a reference

*Total biomass and divided between tree species groups (pine group, spruce group and deciduous)

Method for estimating biomass variables

- K-nearest neighbor estimation method (3-5 nearest neighbors applied depending on the total number of NFI plots covered by satellite image)
- Assumption: NFI sample plots having similar biomass characteristics also have similar satellite image spectral features
- Biomass variable estimates were calculated as weighted averages of the measured biomass variables of the k nearest NFI plots

Results

- Accuracy of the estimates of biomass variables (tree species groups summed together) were on a similar level as typical MSNFI variables (such as stand volume)
- Biomass estimates per tree species were not successful

Cross-validated estimation results

	N	lineral soil		Peatland			
Variable	Estimate	RMSE %	Bias %	Estimate	RMSE %	Bias %	
Stem volume	142.3	67.9	-1.2	100.9	71.3	-0.9	
Stem biomass	56.7	69.7	-1.2	41.2	73.2	-1.3	
Biomass of branches	10.9	60.3	-1.1	7.8	61.6	-1.8	
Biomass of needles/foliage	5.4	64.8	-1.1	3.8	69.5	-3.2	
Total aboveground biomass	73.0	66.0	-1.2	52.8	69.6	-1.5	
Total belowground biomass	22.4	59.6	-1.2	17.0	65.4	-1.1	

	Mineral soil			Peatland			
Variable	Estimate	RMSE %	Bias %	Estimate	RMSE %	Bias %	
Aboveground biomass, pine group	36.6	92.3	1.2	33.2	82.6	2.1	
Aboveground biomass, spruce group	22.6	161.7	-3.9	9.8	213.5	-5.6	
Aboveground biomass, broadleaved	13.8	177.9	-3.2	9.8	184.8	-9.6	

Map of above ground forest biomass, near town of Jyväskylä

Map of below ground forest biomass

Map of branch biomass

peat production cloud built-up area road water agriculture

Branch biomass, t/ha

0 2 4 6 Kilometers

Conclusions

- MSNFI technique can be applied to the estimation of biomass variables in a similar way as traditional forest inventory variables
- Biomass correlates relatively well with satellite image information
 - biomass, especially branch and leaf/needle biomass, major factor in satellite image reflectance
- Separation of tree species not successful (as often the case is with stand volumes)

