Characterising Larix kaempferi among Conifers in Heartwood Properties

Ryogo Nakada FTBC-FFPRI, Japan Characterising *Larix kaempferi* among Conifers in Heartwood Properties

> Acknowledgement: This work is supported by

Forest Tree Breeding Center, FFPRI

KAKENHI, JSPS (23380105)

Larix kaempferi (Lamb.) Carrière Japanese larch

- Endemic to central Japan
- Used in plantation forestry in northern and high elevation areas in Japan (especially in Hokkaido, lwate, Nagano)
- Also introduced to Europe

Newly planted area 2010FY

Source: Forestry Agency (accessed 19 August 2012)

http://www.rinya.maff.go.jp/j/kikaku/hakusyo/23hakusyo/pdf/sankoufuhyou.pdf http://www.rinya.maff.go.jp/j/kokuyu_rinya/tokei/pdf/5-2.pdf

Trend in newly planted area (reforestation)

Financial year

Source: Forestry Agency (accessed 19 August 2012) <u>http://www.rinya.maff.go.jp/j/kikaku/toukei/pdf/mokuzi_2.pdf</u> <u>http://www.rinya.maff.go.jp/j/kikaku/hakusyo/23hakusyo/pdf/sankoufuhyou.pdf</u> <u>http://www.rinya.maff.go.jp/j/kokuyu_rinya/tokei/pdf/5-2.pdf</u>

Larix kaempferi (Lamb.) Carrière Japanese larch

 \checkmark Expected species

Fast growth

Tolerant for cold and diseases

Valuable usage

The eldest plantation of Larix kaempferi, Miyota

The use of Larix kaempferi wood

 \checkmark Brief characteristics of the wood

- High stiffness and strength
- Medium durable
- **X** Sometimes severe spiral grain
- X Surface texture of wood: relatively rough

The use of *Larix kaempferi* wood Construction member

Yamabiko Dome, Matsumoto In Larix 2004 Saitoh Timber, Nagawa In Larix 2004

The use of *Larix kaempferi* wood Pallet

Pile of timber for pallet Hokkaido

The use of Larix kaempferi wood

Traditionally

Post Pallet Package Solid construction Material for civil engineering

Recently

Pallet Glulam Veneer (plywood) Solid interior

The use of *Larix kaempferi* wood Interior

Usage for construction and interior

Desk and chair

Also for exterior

Wada elementary school, Nagawa, in Larix 2004

The use of Larix kaempferi wood

Traditionally

Recently

Durability and appearance are most required <u>Heartwood</u>

Heartwood of Larix kaempferi

Heartwood characteristics

- High volume percentage ⇔ narrow sapwood
- Narrow intermediate wood (transition zone)
- Heartwood substance --arabinogalactan, taxifolin
- Dry heartwood
- Heart-rot

Narrow sapwood in *Larix kaempferi*

Relationship between trunk diameter and sapwood ratio (area base percentage) Data from Yazawa (1963)

Larch data from Nakada et al. (2006)

Diameter, cm

Provenance, family, clone -effective to heartwood amount

JL > EL

Figure 1. – Mean (and SE) heartwood proportion for European and Japanese larch provenances (Coat-An-Noz : IUFRO international provenance trials). The solid line indicates the trial mean.

Variation in heartwood proportion between provenances Pâque et al. 2001

Narrow intermediate wood in *Larix kaempferi*

Air dry optical

Green optical

Green X ray

Cryptomeria japonica IW = I-2 cm

Narrow sapwood in Larix kaempferi

- Narrow (thin) sapwood
 - = Larger heartwood (more value added materials)
 - = Earlier heartwood formation
- Narrow intermediate wood (transition zone) between sapwood and heartwood
 →Narrowest in conifer

Heartwood substance in Larix kaempferi

- Heartwood substances
 - Extractives
 - Colour, durability
 - Species specific

Fig. 1 Differences in the colour values a^* (red hue) between European (*Eur_young*), Japanese and Hybrid larch trees from plantations and old European larch trees from natural stands (*Eur_old*) (*** differences are significant in the Scheffé-test at α =0.05)

Gierlinger et al. 2004

Heartwood substance in *Larix kaempferi*

 \star Two major extractives in *Larix*

- Arabinogalactan
- Taxifolin
 - Almost all are in heartwood

_		
Тах	cifo	lin
I U/		

Fig courtesy of Prof Imai, Nagoya Univ.

Arabinogalactan

- Arabinogalactan
 - Polymer of arabinose and galactose
 - Polysaccharide -- one of hemicellulose (?)
 - Genus Larix contains much arabinogalactan in heartwood
 - *L. kaempferi* heartwood contains 5-7% arabinogalactan
 - Water soluble
 - Use as one of gums
 - Moisture retaining, antifreeze, thickening agent for food (adding viscosity), immunotherapy
 - Minus effects to pulping, plywood usage for concrete

Soap http://www.hepco.co.jp/corporate/company/group/groupassocia.html

Supplement <u>http://www.jarrow.com/product/296/Larix_1000</u>

Arabinogalactan

in Larix kaempferi

Clonal variation in arabinogalactan content

Inter-tree variation in radial distribution in arabinogalactan content

Taxifolin

Taxifolin Fig courtesy of Prof Imai, Nagoya Univ.

Supplement <u>http://valdevir.com</u> <u>http://www.super-smart.eu</u>

- Taxifolin
 - A flavonol (a precursor of quercetin)
 - Genus Larix contains much taxifolin in heartwood
 - L. kaempferi heartwood contains 3-4% taxifolin
 - Methanol soluble
 - Absorbent and deodorising especially for ammonium → ammonized treatment makes larch wood stabilise for discolouration http://www.fpri.hro.or.jp/yomimono/biomass/ingredient/taxifolin.html
 - Antioxidant, anti-reactive oxygen, lower toxic than quercetin, potentially a cancer inhibiter

Taxifolin

in Larix kaempferi

 B_0 : outer bark; B_i : inner bark; S: sapwood; H: heartwood Fig. 6. Distribution of taxifolin in cross-sections.

Taxifolin distribution within a trunk Sasaya 1987

Heartwood substance in Larix kaempferi

- Link with durability and colour
- Two major extractives
- Easy to extract
- Usefulness
- Within tree variation

Dry heartwood of *Larix kaempferi*

Larch heartwood

- generally, MC is around 40%, a bit higher than fibre saturation point
- In general, information is limited

Moisture content of conifers (from Yazawa 1964)

Species	Moisture content (%)	
	Sapwood	Heartwood
Thujopsis dolabrata	154.9	30.5
var. <i>Hondae</i>		
Chamaecyparis obtusa	153.3	33.5
Pinus densiflora	173.3	33.7
Chamaecyparis pisifera	154.5	38.3
Picea jezoensis	160 1	40.6
Larix kaempferi	127.5	40.8
Thuja japonica	200.0	56.9
Abies firma	170.3	60.1
Cryptomeria japonica	165.1	72.4
Abies sachaliensis	211.9	76.1
Cryptomeria japonica	148.0	113.1

M.C. is expressed by oven-dry basis

Compare -- dry heartwood and wetwood

Momi, Japanese fir (Abies firma)

Momi, Japanese fir (Abies firma)

Н

S

S

Dry heartwood of *Larix kaempferi*

In genus Larix

- In L. occidentalis and L. laricina, wetwood occurrence is "scattered prevalence", of which "wetwood will develop on some sites and not on other sites..." (Ward and Pong 1980)
- In L. kaempferi, wetwood occurrence is very occasionally, with very small wet-area (Nakada unpublished)

Family	Genus	Wetwood appearance
Cupressaceae	Cupressus	-
	Chamaecyparis	-
	Thujopsis	-
	Thuja	±
	Juniperus	-
(Taxodiaceae)	Cryptomeria	+
	Taxodium	±
	Cunninghamia	+
Sciadopityaceae	Sciadopitys	?
Pinaceae	Pinus (Diploxylon)	-
	Pinus (Haploxylon)	+
	Larix	±
	Pseudotsuga	-
	Picea	±
	Abies	+
	Tsuga	+
Araucariaceae	Araucaria	?
	Agathis	?
Podocarpaceae	Podocarpus	?
Cephalotaxaceae	Cephalotaxus	?
Taxaceae	Taxus	?
	Torreya	?

+: present

-: not present

±: occasional

?: no record

Dry heartwood of Larix kaempferi

- ✓ L. kaempferi water distribution
 - Black part means water absence; white part means water presence
 - Sapwood: mostly water saturated
 - Heartwood: earlywood is dry and the intertracheid pits are aspirated tightly –good for drying but permeability is low

X-ray photo

Potential heart-rot in Larix kaempferi

Potential heart-rot in Larix kaempferi

Reports on heart-rot

- 8.2 % (1.1-14.1) trees are infected (486 stands in Hokkaido, 15-50 yr old) (Yamane et al. 1990)
- 20.8 %(0-60) trees are infected (26 stands in Nagano, 28-70 yr old), only >1000 m, infertile > fertile (Okada et al. 2002)
- 29.7 % in a 50 yr old stand (Nagano), tree vigour affects to infection (better grown tree was not infected) (Ogawa et al. 2007)

Pathogen –brown-rot fungus

- Phaeolus schweinitzii –kaimen-take
- Sparassis crispa hanabira-take
- Oligoporus balsameus –renge-take

Okada et al. 2002, Wikipedia, Weblio

Kaimen-take

Hanabira-take

Renge-take

Potential heart-rot in *Larix kaempferi*

- Serious problem in forestry
- Genetic improvement
- Heartwood durability

Fig. 2 Scatterplots between mass loss (*g*) after *Poria placenta* (**A**) and *Coniophora puteana* (**B**) attack and the amount of total phenolics (*PHE*)

Gierlinger et al. 2004

Larix kaempferi – as a model species for the study of heartwood formation in conifer

Heartwood characteristics

- Relatively thin sapwood
- Narrow intermediate wood
- Deciduous
- Heartwood substance
- Dry heartwood

- Earlier investigation
- Easier observation of change
- Easy determination of phenology
- Different from other species
- Different from other species

Towards understanding heartwood formation in conifer

A heartwood formation research programme is on going

- Larix kaempferi and Cryptomeria japonica
- Histochemical visualisation of the process of ray parenchyma cell death
- Histochemical in-situ localisation of heartwood substance
- Non-destructive measurement of stem water movement
- Dynamics of the deposition of phenolics on cell wall

Ryogo Nakada, FTBC-FFPRI Yuzo Sano, Hokkaido University Katsushi Kuroda, FFPRI Yoki Suzuki, FFPRI Ryo Funada, TUAT Satoshi Nakaba, TUAT Takanori Imai, Nagoya University

