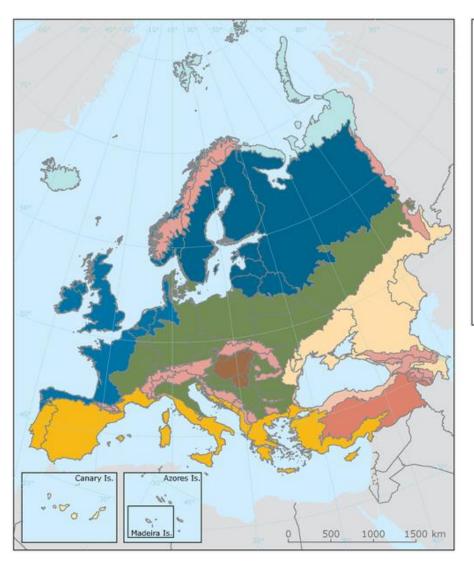
Faculty of Science

New invasive species, which may arrive in the European Union: Horizon scan and risk analysis

Jørgen Eilenberg

University of Copenhagen


Department of Plant and Environmental Sciences


jei@plen.ku.dk

The biological reality

Project leader: Professor Helen Roy, CEH, United Kingdom

Simplified bioregion	EEA bioregions	Köppen-Geiger correspondence
MAC	Macaronesia (Canary Islands + Madeira + Azores)	Warm oceanic or subtropical climate (Cfa) + hot desert climate (Bwh)
MED	Mediterranean + Black Sea	Mediterranean climate with hot (Csa) and warm (Csb) summer + cold semi-arid climate (Bsk)
ATL	Atlantic	Cool (Cfb) + temperate (Cfc) oceanic climates
CON	Continental + Pannonian	Continental climate with warm summer (Dfb)
STE	Steppic	Continental climate with hot summer (Dfa)
BOR	Boreal + Arctic + Alpine	Subarctic (Dfc) and Arctic (ET) climates

The political reality

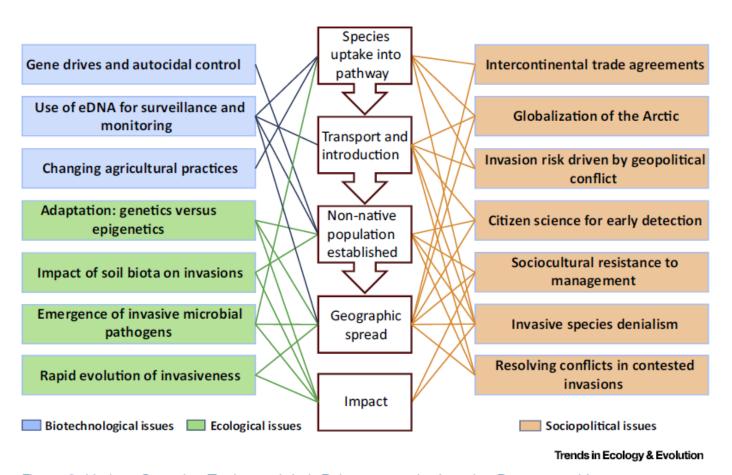


Figure 2. Horizon Scanning Topics and their Relevance to the Invasion Process and Impact. Each of the biotechnological, ecological, and sociopolitical issues identified here has a direct influence on multiple stages of the invasion process: uptake of the species into a vector-pathway system, survival during transport, introduction to a new region, establishment of a reproducing population, and subsequent spread within the region. Several issues also directly challenge our understanding of, and capacity to manage, the ecological impacts of invasions. These links are not meant to be comprehensive, but rather to illustrate the breadth of relevance of these issues.

Open Access

A journal of the Society for Conservation Biology

POLICY PERSPECTIVES

Alien Pathogens on the Horizon: Opportunities for Predicting their Threat to Wildlife

Helen E. Roy¹, Helen Hesketh¹, Bethan V. Purse¹, Jørgen Eilenberg², Alberto Santini³, Riccardo Scalera⁴, Grant D. Stentiford⁵, Tim Adriaens⁶, Karolina Bacela-Spychalska⁷, David Bass^{5,8}, Katie M. Beckmann⁹, Paul Bessell¹⁰, Jamie Bojko^{5,11}, Olaf Booy^{12,13}, Ana Cristina Cardoso¹⁴, Franz Essl^{15,16}, Quentin Groom¹⁷, Colin Harrower¹, Regina Kleespies¹⁸, Angeliki F. Martinou¹⁹, Monique M. van Oers²⁰, Edmund J. Peeler⁵, Jan Pergl²¹, Wolfgang Rabitsch¹⁵, Alain Roques²², Francis Schaffner²³, Stefan Schindler^{15,16}, Benedikt R. Schmidt^{24,25}, Karsten Schönrogge¹, Jonathan Smith²⁶, Wojciech Solarz²⁷, Alan Stewart²⁸, Arjan Stroo²⁹, Elena Tricarico³⁰, Katharine M.A. Turvey¹, Andrea Vannini³¹, Montserrat Vilà³², Stephen Woodward³³, Anja Amtoft Wynns², & Alison M. Dunn¹¹

A multi-authored effort

PRIMARY RESEARCH ARTICLE

WILEY Global Change Biology

Developing a list of invasive alien species likely to threaten biodiversity and ecosystems in the European Union

Threats to **ecosystems**

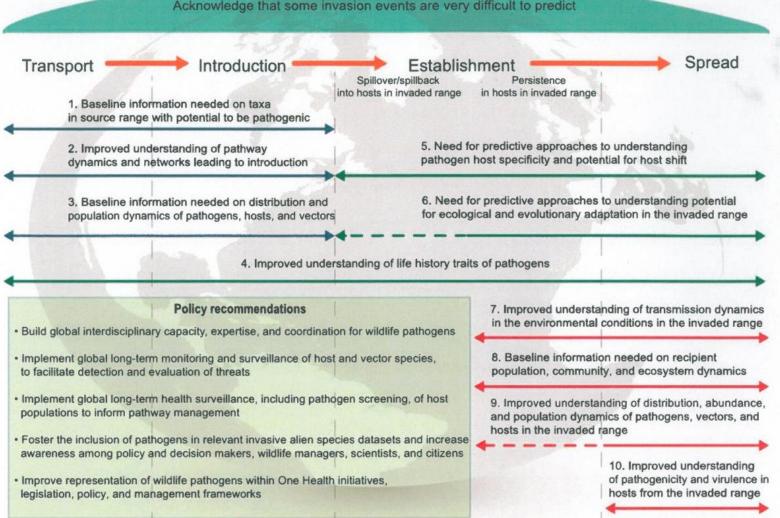
Species (mostly) not yet in the EU

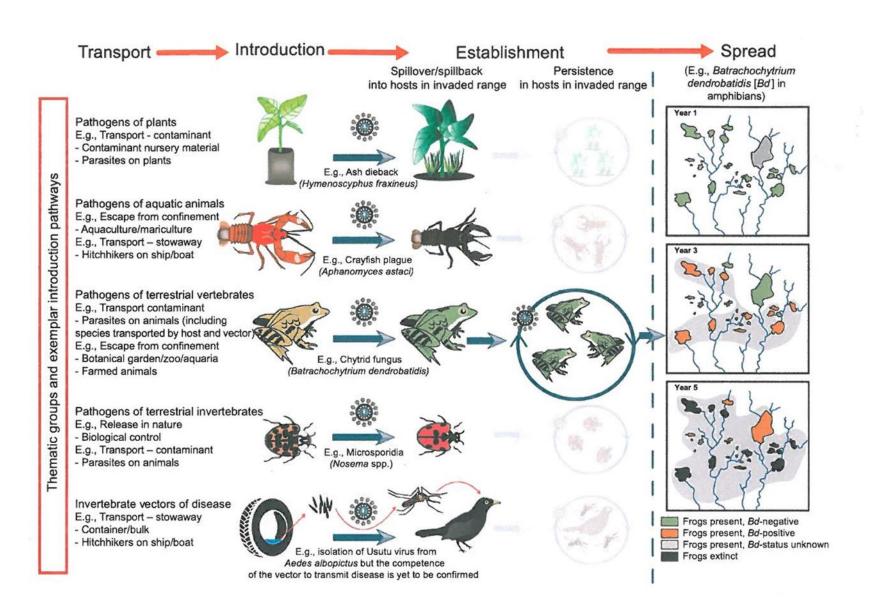
Box moth Cydalima perspectalis

Threatens severely the few pockets of natural box tree (*Buxus*) populations in Southern Europe

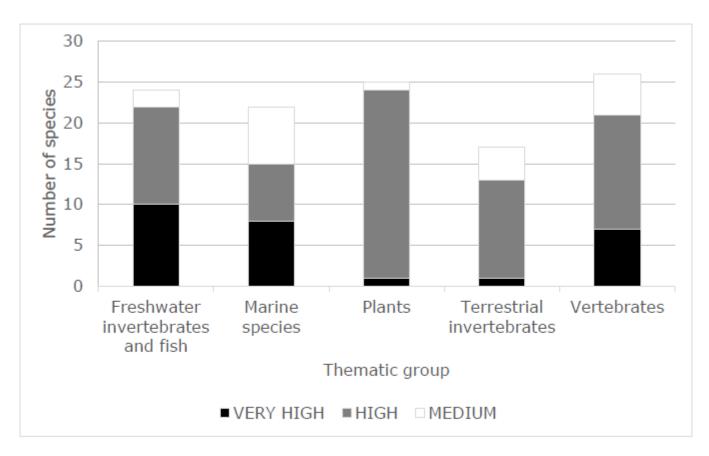
Invasive Alien Species Prioritising prevention efforts
through horizon scanning
ENV.B.2/ETU/2014/0016

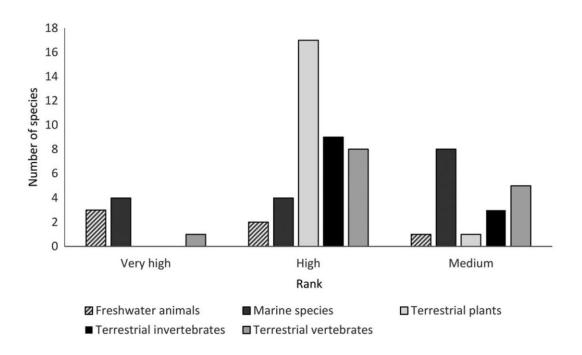
Final report


Study on Invasive Alien Species
- Development of risk
assessments to tackle priority
species and enhance prevention

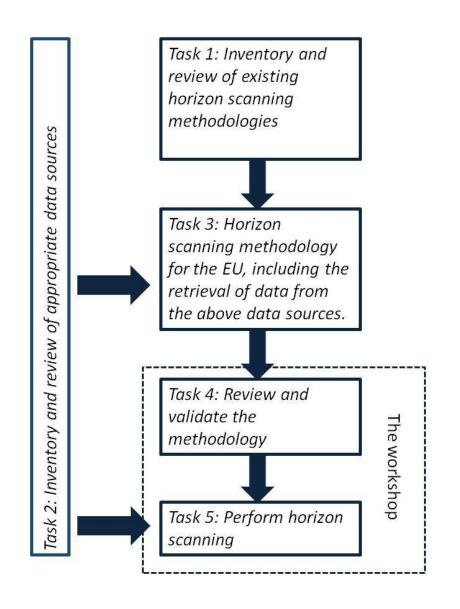

Contract No 07.0202/2016/740982/ETU/ENV.D2

Final Report


Horizon-scanning can be defined as a systematic examination of potential threats and opportunities, within a given context, and likely future developments which are at the margin of current thinking and planning. Horizon scanning may explore novel and unexpected issues, as well as persistent problems and trends.



A team selected species for consideration


Figure 5.2 Number of species agreed by consensus for each thematic group (Freshwater invertebrates and fish, Marine species, Plants, Terrestrial invertebrates, Vertebrates) to represent very high, high or medium probability of arrival, establishment, spread and threat to biodiversity and associated ecosystem services across the EU within the next ten years.

Horizon scan

FIGURE 2 Number of species absent from Europe (n = 66) that were considered to have a very high, high or medium probability of arrival, establishment, spread and magnitude of impact on biodiversity and ecosystem services across thematic groups

Horizon scan

Table 3.7 Descriptors of the five point impact scoring system circulated to the thematic groups for implementation during the preliminary scoring phase of the horizon scanning (Minimal concern =1; Minor =2; Moderate = 3; Major = 4; Massive = 5)

Target of impact	Impact score	Definition
Impact on common species and habitats	Minimal concern	Localised and moderate (or regional and minor) losses, easy to reverse
	Minor	Regional and moderate losses, difficult to reverse
	Moderate	Regional and major (or widespread and moderate) losses, difficult to reverse
	Major	Widespread and major losses, irreversible
	Massive	Not achievable for common species and habitats
Impact on species and habitats of conservation importance	Minimal concern	Localised and minor losses, easy to reverse
	Minor	Localised and moderate (or regional minor) losses, difficult to reverse
	Moderate	Regional and moderate losses, difficult to reverse
	Major	Regional and major (or widespread moderate) losses, difficult to reverse
	Massive	Widespread and major losses, irreversible
Impact on ecosystem	Minimal concern	Minimal change of function
function	Minor	Minor change of function
	Moderate	Moderate change of function
	Major	Major change of function
	Massive	Massive change of all important ecosystem function

Method	Detail	Strength	Weakness
Interview	One-to-one questioning; structured without debate or open	Good at getting key individuals perspectives on the future	No interaction between participants; possible bias due to selection of experts
Open fora	Online platform (Wiki)	Wisdom of the crowd, broadest possible range of contributors	Unstructured without quality control
Questionnaire	Expert consultation through pre-defined questions	Provides an overview of opinion on a specific theme	No interaction; possible bias due to selection of experts and how questions are phrased
Literature review	Extensive review of existing literature	Broad approach underpinned by existing knowledge (if peer- reviewed)	Unavailability of published reports or expert opinion; delay between observation and publication
Modelling approach	Quantitative approach to derive predictions	Available data used to construct models to derive predictions	Depends on detailed life- history datasets which for many species are lacking
Survey and experiment	Surveys of the environment in some cases coupled with experimentation	Realistic data derived	Labour intensive and expensive

Table 3.5 Confidence scores accompanied by examples to provide context based on the proposed unified framework for environmental impacts (Blackburn et al. 2014) and the EPPO Pest Risk Assessment Decision Support Scheme (EPPO 2011).

Confidence Score	Examples
High	There is direct relevant evidence to support the assessment. The situation can easily be predicted. There are reliable/good quality data sources on impacts of the species. The interpretation of data/information is straightforward. Data/information are not controversial, contradictory.
Medium	There is some evidence to support the assessment. Some information is indirect, e.g. data from phylogenetically or functionally similar species have been used as supporting evidence. The interpretation of the data is to some extent ambiguous or contradictory.
Low	There is no direct evidence to support the assessment, e.g. only data from other species have been used as supporting evidence. Evidence is poor and difficult to interpret, e.g. because it is strongly ambiguous. The information sources are considered to be of low quality or contain information that is unreliable.

New Zealand Flatworm New Zealand fladorm *Arthurdendyus triangulatus*

Fire ants Solenopsis spp. 'Ildmyre'

White-lined silk moth Dendrolimus superans

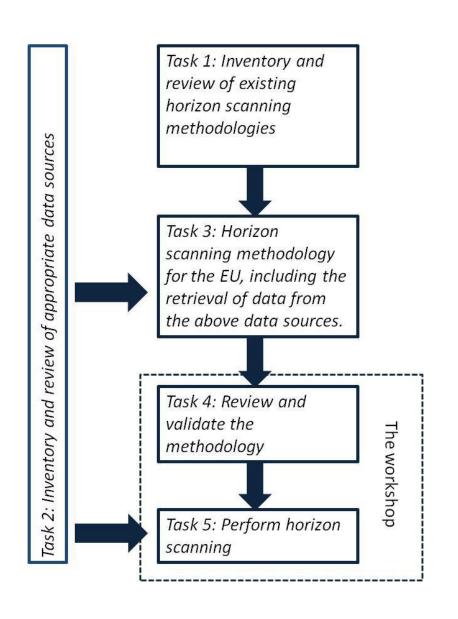
Siberian silk moth Dendrolimus sibiricus

Chital deer Axis axis Chital hjort

Common kingsnake Lampropeltis getula 'Kongesnog'

House crow *Corvus splendens*

Small Asian mongoose (*Herpestes javanicus*



Step one: ranking species within same group of organisms

Vertebrates

Species	Common name	Taxonomic group	Functional group	Native distribution	Already present in EU?	Initial Overall impact on biodiversity score (A*B*C*D)
Axis axis	Axis deer	Mammals	Herb	As	Yes	625
Castor canadensis	American beaver	Mammals	Herb	NAm	Yes	625
Cervus nippon	Sika deer	Mammals	Herb	As	Yes	625
Corvus splendens	House Crow	Birds	Omni	As	Yes	625
Herpestes	Egyptian	Mammals	Pred	Afr	No	625

Horizon scan

Step 2

Ranking all organisms in one list

Plants, invertebrates, vertebrates, aquatic species

1 Channa argus. The northern snakehead is a species of fish native to southern and eastern China but now also widely distributed in Japan within shallow, marshy ponds and wetlands, where it preys on native fish species.

2 Limnoperna fortunei. The golden mussel is native to China and south-eastern Asia but became established in Hong Kong in 1965, and Japan and Taiwan in the 1990s. Subsequently, it invaded the United States and South America. It alters native fauna with an impact on the freshwater food web.

3 Orconectes rusticus. The rusty crayfish, native to the United

States but now found in Canada, is a large and aggressive species of freshwater crayfish, which is more successful in deterring attack from predators than other crayfish and therefore outcompetes native species.

4 Plotosus lineatus. The striped eel catfish is native to the Indian Ocean but was first recorded in the Mediterranean in 2002 and subsequently spread rapidly along the entire Israeli coast. This venomous catfish now inhabits all sandy and muddy substrates contributing to species declines through competition and displacement

5 Codium parvulum. This green seaweed native to the Indo-Pacific Ocean and subsequently described from the Red Sea, has since been recorded off the northern shores of Israel in the Mediterranean and along the Lebanese coast. It is considered an ecosystem engineer, altering the structure and functionality of ecosystems.

6 Crepidula onyx. The onyx slipper snail is native to the southern coast of California and northern Pacific Coast of Mexico. It is now widespread and considered highly invasive in Asia where it has been reported from Korea, Japan and Hong Kong. Slipper snails are sedentary filter-feeders and change native ecosystems.

7 Mytilopsis sallei. The black striped mussel described from the Pacific coast of Panama is a brackish species that invaded the Indo-Pacific Ocean during the 1900s and has reached Fiji, India, Malaysia, Taiwan, Japan, and Australia. In some of these coastal areas the species completely dominates since it can survive extreme environmental conditions.

8 Sciurus niger. The fox squirrel native to eastern and central North America, competes for resources with the native western gray (S. griseus) and Douglas squirrels (Tamiasciurus douglasii).

10 Albizia lebbeck. Woman's tongue probably originated in tropical Asia. Its uses include environmental management, forage, medicine and wood. It was introduced for forestry or erosion control in many countries. Fast-growing and reaching 18 to 30m in height, it is now naturalised mainly in dry tropical regions and can invade natural and semi-natural environments, like Florida Keys

Solenopsis ants ranked much lower

Name of organism: Solenopsis richteri, Forel, 1909.

Author(s) of the assessment:

Olivier Blight, Dr, Institut Méditerranéen de Biodiversité et d'Ecologie, Avignon University, France

S. richetri worker, credits: Alex Wild

Risk Assessment Area:

The risk assessment area is the territory of the European Union, excluding the outermost regions.

Peer review 1: Wolfgang Rabitsch, Environment Agency Austria, Vienna, Austria

Peer review 2: Jørgen Eilenberg, University of Copenhagen, Denmark

Peer review 3: Richard Shaw, CABI, UK

Peer review 4: Marc Kenis, CABI, Switzerland

Summarise Entry	RESPONSE very unlikely unlikely moderately likely likely very likely	CONFIDENCE low medium high
Summarise Impact	minimal minor moderate major massive	low medium high
1.3a. Is introduction along this pathway intentional (e.g. the organism is imported for trade) or unintentional (e.g. the organism is a contaminant of imported goods)? (if intentional, only answer questions 1.4, 1.9, 1.10, 1.11 – delete other rows)	intentional unintentional	low medium high
Biodiversity and ecosystem impacts 2.13. How important is impact of the organism on biodiversity at all levels of organisation caused by the organism in its non-native range excluding the risk assessment area?	minimal minor moderate major	low medium high

Conclusion

- Many invasive plants, animals and microorganisms may pose a future problem in the EU
- Horizon scan is a useful method to collect and evaluate data in a systematic way
- It is possible to make a ranking within organismal groups
- It is also possible to make a ranking across organismal groups, although such ranking gives challenges for the scientists involved
- Detailed risk analyses are ongoing for selected species

CA17122 Alien CSI

Chair: Helen Roy

Vice-chair: Quentin Groom

Working Groups

WG1: Engaging people in CS - Elizabete Marchante, Peter Brown

WG2: Approaches to CS - Tim Adriaens, Elena Tricarico

WG3: Data management and standards – Jan Pergl, Lien Reyserhove, Aletta Bonn

WG4: Analysis and visualisation – Franz Essl, Sven Jelaska, Michael Pocock

WG5: Cross-cutting CS initiative(s) for IAS across Europe - Bernat Claramunt, Alan Deidun

